

VI Semester B.Sc. Examination, May 2016 (Semester Scheme) (Old Scheme) (Prior to 2013-14) PHYSICS – VIII

Relativity, Astrophysics and Nuclear Physics

Time	e : 3	Hours Max. Mark	s:60	
		PART – A		
Answer any five of the following. (5×6=30)				
o ^{1.}		State the postulates of special theory of relativity. Obtain Lorentz transformation equations.	(2+4)	
o ² .	a) b)	Define Proper length. Derive Einstein's mass-energy relation.	(1⊹5)	
3.	a)	Define Astronomical Unit.		
	b)	Obtain the expression for gravitational potential energy of a star using linear density model.	(1+5))
3 _{4.}	a)	What is H-R diagram? How are the Stars in space classified on the basis H-R diagram?	of	
0	b)	Explain how surface temperature of a star related to its colour.	(4-2	2)
9 5.	a)	Define Absolute magnitude of a Star.		
	b)	Obtain the distance modulus formula in terms of apparent and absolute magnitude of a Star.	(1+	5)
6.	Obtain the relation between impact parameter and scattering angle assuming the path of α -particle to be hyperbola.			6
7.	De	erive an expression for the disintegration energy of α -particle.		6
8.	De	escribe the working of a cyclotron with a neat diagram and necessary the	ory.	6

PART – B

Answer any four of the following:

(4×5=20

- 9. An atomic particle has a rest mass of 3×10^{-25} Kg. Find its total mass energy and when it is travelling with a velocity of 0.8C.
- 10. A star has a surface temperature of 9800 K and its radius is 1.68×10^6 Km. Calculate its Luminosity. Take $\sigma = 5.67 \times 10^{-8}$ Wm⁻² K⁻⁴.
- 11. Calculate the core pressure of a star of mass 2×10^{30} Kg, radius 7×10^8 m and $G = 6.67 \times 10^{-11}$ Nm²Kg⁻².
- 12. Calculate the Q-value of the reaction in which $_{13}$ Al 27 on bombardment with α -particle converts into $_{15}$ P 30 . Take $M_{Al}=26.8154~u,~M_{He}=4.0026~u$ $M_{n}=1.008665~u,~M_{P}=29.9783~u.$
- The total energy of a particle is exactly twice its rest energy. Calculate its speed.
- 14. The length of the object is measured to be exactly $\frac{10}{12}$ of its actual length. Calculate the speed of the object and time dilation corresponding to one second on the object. Take $C = 3 \times 10^8$ m/s.

PART-C

15. Answer any five of the following:

 $(5 \times 2 = 10)$

- a) Is the mass of an object constant in any frame of reference ? Explain.
- b) Is the speed of light in free space invariant? Explain
- c) Why was Pauli's neutrino hypothesis proposed in β-decay process ?
- d) What is binary star? Explain.
- e) Why are neutron stars called pulsars?
- f) Why combustion reaction is not a possible source of Stellar energy?